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Abstract-The paper deals with the detection of signals with 
unknown parameters in impulsive noise, modeled as a spher- 
ically symmetric random process. The proposed model sub- 
sumes several intereeting families of nobe amplitude distri- 
butions: generalized Cauchy, generalired Laplace, general- 
ized Gaussian, contaminated normal. It also allows handling 
of the case of correlated noise by a whitening approach. 
The generalised maximum likelihood decidon strategy is 
adopted, resulting in a canonical detector, which is indepen- 
dent of the amplitude distribution of the noise. A general 
method for perlormarice evaluation is outlined, and a com- 
prehensive performance analysis is carried out tor the case 
of M-ary equal-energy orthogonal signals under several dis- 
tributional assumptions for the noise. The performance is 
contrasired with that of the maximum likelihood receiver for 
completely known signals, MI as to assess the loss due to the 
a-priori uncertainty as to the signal parameters. 

I. INTRODUCTION 
N most applications of statistical decision theory to de- I tection of signals in additive noise, Gaussian noise is as- 

sumed since other distributional assumptions usually lead 
to mathematical difficulties. However, in many practical 
instances the measured probability density function (pdf) 
of the additive disturbance exhibit much heavier tails than 
the Gaussian distribution. A number of models have been 
proposed for such an impulsive noise, either fitting experi- 
mental data or based on physical grounds. For a review of 
the most credited empirical and theoretical models see [l] 
and references thereof and [a, pp. 72-94]. 

Designing optimum detectors for these noise models re- 
quires the complete statistical specification of the received 
signal under each hypothesis. For the case that the use- 
ful signal is completely known, this amounts to specifying 
the noise process only. If noise samples are independent, 
a first order characterization suffices. If, more realistically, 
noise samples are correlated, a model is needed which com- 
pletely specifies the noise starting upon a partial knowledge 
of the relevant statistics. In practice, however, the useful 
signal can hardly be considered completely known: then, 
the specification of the received signal entails a further an- 
alytical burden due to unknown or fluctuating parameters 
in the useful signal. 

For the case of independent non Gaussian noise samples, 
the theory of Locally Opdimum Bayes Detection (LOBD) 
can be applied: the likelihood functions are replaced by 
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their Mc Laurin expansions, truncated to the first non- 
zero term, with possibly an additional bias term to  ensure 
asymptotic optimality [l] The resulting decision structure 
depends upon the signal parameters, whether unknown or 
fluctuating, as well as on the noise pdf [3] It achieves locally 
(i.e., for vanishingly small signal-to-noise ratio (SNR)) min- 
imum error probability, but performance may strongly de- 
part from the theoretically optimum achievable one as the 
SNR increases [1,4]. Moreover, the extension to  correlated 
observations turns out to be unwieldy and usually requires 
a suboptimal approach due to the incomplete knowledge of 
the noise statistics [5]. 

An alternative approach relies on removing the a-priori 
uncertainty about the signal parameters by performing their 
Maximum Likelihood (ML) estimates under each hypothe- 
sis. Decision is made according to a generalized Maximum 
A-posteriori Probability (MAP) rule, wherein the unknown 
parameters are replaced by their ML estimates. This ap- 
proach is usually referred to as Generalized Maximum Like- 
lihood (GML) rule [6, chap. VII]. 

In this paper we apply this approach to detection of M 
equally likely signals, with unknown amplitude and phase, 
in additive noise modeled as a Spherically Invariant Ran- 
dom Process (SIRP). Such a model is compatible, at least 
in the first-order pdf, with all of the most credited distribu- 
tions for non-Gaussian, or impulsive, noise, and leads to a 
canonical receiver, namely one whose structure and opera- 
tion are independent of the distribution of the noise. A gen- 
eral procedure for the assessment of the performance is out- 
lined and examples referring to several non-Gaussian noise 
distributions are presented. The rationale for this compar- 
ative analysis is to evaluate to what extent the marginal 
pdf of the non-Gaussian noise affects the receiver perfor- 
mance, once the SIRP model is in force. 

11. SIRP MODEL FOR NON-GAUSSIAN NOISE 

We deal with the M-ary hypothesis testing problem [6, 
chap. VII], [7, chap. XXIII] 

Hi : r ( t )  = crpi( t )  + c ( t ) ,  i = 1 , . . . l M  (1) 

where p i ( t ) ,  i = 1,. . . , M and r ( t )  are the complex en- 
velopes of the transmitted waveforms and of the received 
signal respectively, c ( t )  is a complex (possibly correlated) 
non-Gaussian process, modeling the noise and a = Aeje is 
a (possibly unknown) complex parameter, accounting for 
the incomplete knowledge of the useful signal. 
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Table I 
Families of admissible densities 

Xi E i S ( S  - Si) 
Contaminated 

normal I .; = q!L&i Middleton Class-A e, = e-”$; 

Gaussian 

The noise model should match experimental data which 
usually consist only of the marginal pdf and the autocor- 
relation function (acf) of disturbance. This leaves some 
indeterminateness as many noise models may comply with 
these constraints. Further desirable requisites for a noise 
model are that it be physically consistent and mathemati- 
cally tractable. The most credited physical model has been 
proposed by Middleton [8]: unfortunately, the higher-order 
characterization of such a process in the general case of ar- 
bitrary correlation turns out to be unwieldy. Another im- 
portant model is the exogenous one which regards the noise 
as the product of a real, non-negative, wide-sense station- 
ary process, s ( t ) ,  say, times a Gaussian (possibly complex) 
one, g ( t ) ,  say, independent of s ( t ) ,  namely c ( t )  = s( t )g ( t ) .  
It has been shown physical ly  consistent with some impor- 
tant disturbance phenomena, such as atmospheric noise [9]. 
This model describes quite faithfully disturbance phenom- 
ena arising from doubly stochastic mechanisms, wherein a 
slowly varying component - sometimes referred to as regime 
process [9] - modulates a Gaussian component (accounting 
for the local validity of the Central Limit Theorem) with 
much shorter decorrelation time. If the observation time is 
short with respect to the coherence time of the modulat- 
ing process, then s ( t )  can be approximated by a random 
constant s, to be called the auxiliary variate, and the ex- 
ogenous process degenerates into a SIRP, namely [10,11] 

c ( t )  = sg(t) . (2) 

Thus a SIRP is essentially a conditionally Gaussian ran- 

dom process. The process c ( t )  is real or complex according 
to g ( t ) :  in the present paper we consider complex SIRP’s 
since we deal with complex envelopes. Accordingly to (2) 
the mean and the acf of g ( t )  coincide, except for scale fac- 
tors, with those of c ( t ) .  We assume that s has unit mean 
square value so that both the SIRP and the underlying 
Gaussian process share the same autocorrelation (such a 
normalization is possible whenever s possesses finite mean 
square value) but we do not assume any particular struc- 
ture of the autocorrelation matrix of the complex process. 
We refer to Appendix A of [12] for possible structural con- 
straints on such matrix deriving, e.g., from an assumption 
of stationarity. An important feature of SIRP’s is that 
they are completely specified by the autocorrelation of the 
overall process and the auxiliary pdf f(s). Precisely, let 
c = C I + ~ C Q  be the complex row vector of N samples drawn 
from the process c ( t )  which we assume zero-mean, without 
loss of generality: its statistical characterization amounts 
to assigning the joint pdf of the 2N components of the real 
vector ( C I ,  C Q ) .  Denoting by M = E[(cI ,  C Q ) ~ ( C ~ ,  CQ)] its 
covariance matrix, it follows from (2) that the multivariate 
pdf of a complex SIRP admits the expression 

where x = ( X I ,  X Q )  is the 2N-dimensional real argument, 
11 x I I M =  d- is the norm induced by the positive 
definite matrix M-’ and h z ~ ( z ) ,  x 2 0, is the decreasing 
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function 

h Z N ( 2 )  = lt" g e x p  (-&) ds .  (4) 

It follows from (2) that SIRP's are closed under linear 
transformations. In fact, if c(t) undergoes a linear transfor- 
mation, due to the scale property of linear systems and the 
closure property of Gaussian processes, this implies that 
the multivariate pdf of the transformed process is still given 
by (3), where M is now the covariance matrix of the Sam- 
ples of the output process ElO,ll]. It can also be shown 
that the quadrature components of a complex SIRP pro- 
cess share the same marginal pdf, designated f~(.), which 
is expressible as 

where u2 is the variance of g(t). Thus, (5) is an admissi- 
bility condition. 

Some admissible densities are reported in Table I, where 
I?(.) is the Eulerian Gamma function, K Y ( . )  is the mod- 
ified Bessel function of second kind and order v ,  a is a 
scale parameter related to the common variance u2 of the 
quadrature components, and v is a shape parameter rul- 
ing the rate of decay of the noise pdf. The contaminated 
normal is the only distribution corresponding to a discrete 
auxiliary variate and subsumes the Middleton Class-A pdf 
whose parameter X represents the ratio of the power of the 
Gaussian component of the noise to that of the impulsive 
(Poisson) one. Notice that compatibility between the Mid- 
dleton Class-A model and the SIRP model is limited to 
the marginal pdf only, as the two models lead to different 
higher-order characterization. All these families include 
the Gaussian pdf as a special case: precisely, the general- 
ized Gaussian yields the Gaussian distribution for v = 2, 
while the others reduce to the Gaussian distribution in the 
case v + 00. 

111. SYNTHESIS OF THE RECEIVER 

A. Known signals 
The following derivation of the ML receiver for detection 

of M known signals is a straightforward extension of previ- 
ous results [13]. It lays the groundwork for the subsequent 
new derivation regarding detection of unknown signals and 
serves as a reference for performance assessment. 

Let us assume, at  first, that the noise process is uncor- 
related. This ensures that the components of the com- 
plex envelope c ( t ) ,  in an arbitrary orthonormal basis, say 
{ $ i ( t ) } ,  i = 1 , .  . ., are uncorrelated (not necessarily inde- 
pendent) complex random variables, with a common vari- 
ance equal to 2N0, the Power Spectral Density (PSD) of 
c( t ) :  thus, the real and the imaginary part of these com- 
ponents are sequences with the same autocorrelation and 
zero cross-correlation [12]. Moreover, by the cited closure 
property, these sequences are SIRP's with the same auxil- 
iary pdf as c(t). Therefore a basis can be chosen whose first 

L components, L 5 M ,  span the subspace CL of the trans- 
mitted waveforms p i ( t ) ,  i = 1,. . . , M. In anticipation of a 
limiting procedure for N -, 00 we approximate the wave- 
forms of (1) by their projections along q,bi(t)> i = 1, . . . ) N ,  
N 2 L ,  reducing the test to its vector form 

Being a a known parameter, the relevant likelihood func- 
tions for this test are 

i =  1 , 2 , . . . , M  

where 11 11 denotes Euclidean norm. As h 2 N ( ' )  is a de- 
creasing function (for non-negative arguments), whichever 
the pdf f(s) (see eq.(3)), the ML rule for perfectly known 
signals reduces to the conventional one based on mini- 
mizing, with respect to the signal index i, the distance 
11 r - api 11 or, equivalently, on maximizing the quantity 
W(r * &pi} - f 11 api  [ I2,  where W{.} denotes real part. 
Since all pi's have at most the first L coordinates non-zero, 
then the noise components orthogonal to CL are irrelevant. 
Therefore, the test statistic does not depend on N ,  pro- 
vided N > L, and in fact it can be expressed as 

where the integral is over the observation interval. The 
receiver thus consists of M matched filters: the real part 
of each output is corrected by a signal-dependent bias and 
subsequently fed to a largest-of selection device. 

Let us now remove the assumption of uncorrelated noise, 
as it is unrealistic for the impulsive noise [14]. Modeling 
the impulsive noise as a correlated SIRP, one can take ad- 
vantage of the closure of SIRP'rs under linear transforma- 
tions. In fact, by preprocessing the received signal through 
a linear filter which whitens the disturbance, the prob- 
lem of detecting the signals pi(t), i = 1 , .  . . M in corre- 
lated noise reduces to that of detecting the filtered sig- 
nals q j ( t )  = ,Cpj( t ) ,  i = 1 , .  . . , M, in uncorrelated noise. 
Therefore, the ML receiver for correlated SIRP noise is the 
same as for uncorrelated noise, but includes a whitening fil- 
ter as its first stage. The resulting structure is as depicted 
in Fig. 1. We stress here that this receiver is canonical in 
the sense that its structure and operation are independent 
of f ( s )  and, hence, of the specific distributional assump- 
tion about the noise, provided the admissibility condition 
(5) is fulfilled. 

B. Signals with unknown parameters 
We now proceed to the case of unknown signals, pre- 

cisely to the case that neither the amplitude A nor the 
phase B of a are known. We deal a t  first, with uncor- 
related noise. To handle such an incomplete knowledge, 
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the unknown parameter a in (6) might be considered as 
a complex random variate with pdf p(a) and the average 

likelihood J fr (r la ,  H i ) p ( a )  da might be maximized. To 

avoid dependence of the resulting receiver structure upon 
p(a)  the most adverse p ( a )  might be selected according to 
the mini-max strategy [12]. 

A more convenient approach is the Generalized Maxi- 
mum Likelihood (GML) rule: a is modeled as an unknown 
parameter, rather than as a random variate yielding an M -  
ary composite hypothesis testing problem (provided that 
all transmitted signals have non-zero energy). The hypoth- 
esis Hi is then selected for which the generalized likelihood 
function: fr(rlG, H i )  is maximum, where 6 is the ML es- 
timate of a. Based on (7), implementing the GML rule 
amounts to maximizing over the parameter space and the 
indexspace the quantity h ’ ~ ( N [ l ’ ~  11 r-apj II), or, equiv- 
alently, to minimizing the argument of h ’ ~ ( - )  with respect 
to a and i .  In accordance to GML rule, mina ( 1  r - a p i  I)= 
11 r - Gpj (1, and therefore the GML rule is still a minimum 
distance rule, but the distances are between the received 
vector r a n d  the estimatedsignal vectors $pi, i = 1,.  ... M .  
Next, it is readily seen that 11 r - api  (1’ is minimum at 

, SO that the GML detector maxi- 
mizes, with respect to i ,  the quantity Ir. pil/ 11 pi [(. As 
the noise components orthogonal to CL are irrelevant, this 
statistic does not depend on N ,  provided N 2 L ,  and can 
be expressed as 

= (r . pi)/ 1 1  pi (1’ 

where the integral is over the observation interval. Thus 
the GML receiver selects the largest output from M en- 
velopes detectors cascaded to as many filters, matched to 
the normalized signal waveforms. 

The assumption of uncorrelated disturbance can now be 
removed resorting to a whitening filter (Sec. 3A), leading 
to the GML receiver structure for correlated non-Gaussian 
noise shown in Fig. 1, still canonical in the previous sense. 

In case of equal energy signals, the GML detector re- 
duces to the conventional incoherent receiver, optimum un- 
der Gaussian disturbance. Each composite hypothesis is 
the subspace, spanned by p i ( t ) ,  of the transmitted signal 
vector space. If two or more such subspaces coincide - as 
it is the case when the respective transmitted waveforms 
are proportional (in the sense that they differ only for a 
complex factor) - then the corresponding hypotheses are 
completely overlapping in the parameter space, due to the 
effect of channel gain a ,  and hence are not resolvable even 
if the additive noise c ( t )  is absent. Conversely, hypotheses 
corresponding to orthogonal subspaces are mutually exclu- 
sive in the absence of additive noise, independently of the 
channel gain, and hence are perfectly resolvable. Conse- 
quently, one might expect that the set of orthogonal signals 
is optimal. 

In the case that one of the transmitted signals is zero, 
which is a case of one simple hypothesis versus M - 1 com- 
posite alternatives, the GML strategy is inapplicable. For 

I . . . . . . . . . . . . .  
. . . . . . . . . . . . .  
matched 

filter 

+-+ . . . . . . . . . . .  
ax. 

. . . . . . . . . . .  

Figure 1:  Schemes of the optimum ML (top) and GML (bottom) detec- 

tor. 

example consider On-Off Keyed (OOK) signals: p l ( t )  = 0, 
p z ( t )  = p ( t ) .  Then the GML test is 

if I/ r(t)p*(t)dtl > 0 then decide H I  (10) 

which is useless as the error probability is l /2 ,  whichever 
the SNR. To improve on this situation, one could resort 
to the so-called Generalized Likelihood Ratio (GLR) test. 
This can be considered as an extension of the GML ob- 
tained by allowing the threshold -which is unity for GML- 
to take on any value 2 1 so as to keep the type-I error to a 
prescribed level a while minimizing the type-I1 error. Ac- 
cordingly, the total error probability decreases from 1/2 for 
no signal, to a/2) for arbitrary large SNR. Unfortunately, 
implementing GLR requires a non-linearity depending on 
the noise distribution. Thus the receiver structure would 
be no longer canonical. 

Iv PERFORMANCE ASSESSMENT 

The performance of the receiver for either known or un- 
known signals can be evaluated once f(s) is given. In fact, 
on one hand receiver (9) coincides with the conventional in- 
coherent receiver; on the other, any SIRP is a conditionally 
Gaussian process (see eqn.2). Thus, the error probability, 
P(e) ,  can be computed through 

P(e) = i+m P(els)f(s)ds , (11) 

where P(els) is the error probability of the receiver subject 
to Gaussian disturbance with zero mean and PSD 2s’NO. 
This shows that, just as in the case of Gaussian noise, re- 
ceiver performance depends on the geometry of the adopted 
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signaling scliciiie. Moreover, perforitlance is expccted to 
depend on the peak SNR's at thc output of the matched 
filters, but to be otherwise indepcndcnt of the transmitted 
waveforms p i  ( 1 ) .  

M-ary orthogonal signaling 

In principle, (1 1) allows one to evaluate the performance 
of any signal constellation for which the corresponding per- 
formance under Gaussian disturbance is known. We focus 
on the case of M orthogonal signals with equal energy E .  
If the signals are completely known, use of a classical result 
of optimum detection in Gaussian noise [15, p. 1521 yields 

1 +O0 

6 --a, 
P(els)  = - 1 { 1 - [l - Q ( z ) ] ~ - ' }  

(12) 

exp [-: (z - d-)'] dx , 

where YR is the common SNR. For the case M = 32, the 
performance have been numerically computed for Middle- 
ton CIass-A and Generalized Gaussian marginal pdf's of 
noise, and are reported as dashed curves (ML detector) in 
Figures 2 a,b respectively, representing P(e)  versus the per 
bit SNR ~b = 7 ~ /  log2 M . Here and in the sequel, we re- 
fer to the peak SNR at the output of the matched filter, 
which in turn is related to the input SNR Tin through the 
so-called processing gain, G say, as 

where G = TB is the product of the signal bandwidth 
times the processing time. The quantity 7 i n  is meaning- 
ful in that, upon proper normalization, it represents the 
minimum delectoble signal [7], namely the weakest signal 
that can be detected with prescribed P ( e ) .  However, unlike 
the peak SNR YR, the minimum detectable signal depends 
upon the transmitted waveforms, which strongly affect the 
processing gain. 

If the signals have unknown parameters, again from clas- 
sical results of detection in Gaussian noise [15, p. 2121, we 
have 

Averaging with respect to the auxiliary pdf's under con- 
sideration yields, for Contaminated Normal noise: 

for Generalized Laplace noise: 

0 5 10 15 20 
Ya (dB) 

Fig. 2 ML (dashed) and GML (solid) receivers performance for h1-ary 
orthogonal signals (M=32) with varying shape parameter: a) Middleton 
Class A marginal pdf; b) generalized Gaussian marginal pdf. 

for Generalized Cauchy noise: 

In cwe of Generalized Gaussian noise, instead, a closed- 
form expression for P ( e )  cannot be achieved, whence nu- 
merical integration techniques are to be adopt.ed. 

From equations (16) and (17)) the limiting value of P ( e )  
for vanishingly small SNR is l/Af. regardless the shape 
parameter of the noise pdf. The case of Middleton Class-A 
marginal pdf with no Gaussian coinponent (i.e., A = 0) is 
an except.ion to this trend. In this case the limiting value 
of P ( e ) ,  as evaluated from (15), is 

lini P ( r )  = ( 1  - M-')( 1 - (0) = ( I  - A 4 - ' ) (  1 - r - " )  . 
TR-0 

(18) 
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Fig. 3 GML receivers performance for the Middleton Class-A model. 
Orthogonal signaling with varying signal dimensionality and shape pa- 
rameter (solid Y = . l ,  dash Y = CO). 

This is not surprising, since for the case at  hand there is a 
non-zero probability (e-”) of no-noise in the observed sig- 
nal. Correspondingly, for YR + 0, P ( e )  is zero with prob- 
ability CO and 1/M with probability 1 - €0, which explains 
the dependence of the limiting value upon the shape pa- 
rameter, as evidenced in Figure 2a (top). The performance 
for orthogonal, equi-energy signals with unknown param- 
eters are shown versus 7b as continuous plots in Figures 2 
a,b, for M = 32 and for Middleton Class-A and General- 
ized Gaussian noise pdf, respectively. Comparison between 
corresponding characteristics for ML and GML detection 
allows one to evaluate the loss due to the partial knowl- 
edge about the signal parameters. This loss turns out to 
be influenced by the noise spikyness as well as by the SNR. 
As a general trend, spiky noise results in worse detection 
performance in the “strong signal” zone, and in enhanced 
detectability of “weak signals”: also notice that tlie tran- 
sition between the weak signal and the strong signal zone 
is smoother as noise spikyness increases. As expected, the 
curves exhibit a pedestal in the order of l /M,  whatever 
the noise distribution and its shape parameter, wi th  the 
relevant exception of noise with Middleton Class-A distri- 
bution with X = 0, where the curves are attracted by the 
asymptote (18). 

The effect of the size of the signal set can be elicited froni 
Figure 3, where the performances for known and uiiknown 
signals are reported for Middleton Class-A noise w i t h  v = 
0.1 and v = 00 and for several values of Ai. In  particular, 
the gain resulting from increasing tlie size dl froni ’? to 32 
is quite uniform with v: for example, at  P ( F )  = IO-’? i t  is 
in  tlie order of 5 dB for both spiky (11 = 0.1) and Gaussiaii 
noise (v = CO). 

Srnszttm/y aiialyszs 

The above perfortrtance analysis shows tha t ,  wlintcvcr 
the distxibutional assuinption on the tioisc. t l i e  slinpc pa- 

Fig 4 GML receiver performance with varying shape parameter for Gen- 
eralized Gaussian noise (solid curve); Generalized Laplace noise (dashed 
curve); Generalized Cauchy noise (Long-dash curve); Middleton Class A 
noise (dot-dash curve). 

rameter is quite influential for detection performance. This, 
and the invariance of the receiver with respect to the noise 
distribution, suggest a sensitivity study aimed to ascertain 
whether the detection performance actually depends upon 
the parameter v but is otherwise only marginally affected 
by the distribution itself. To this purpose, we evaluate 
detection performance under several instances of noise dis- 
tribution, with the constraint that their respective shape 
parameters are set so as to achieve matching in the first two 
non-zero moments. We limit this analysis to the case of 
GML detection. Denoting by V A ,  VG, vc and V L  the shape 
parameters of the Middleton Class A with X = 0, Gaussian, 
Cauchy and Laplace generalized distribution, respectively, 
the values which ensure the quoted matching are the solu- 
tions of the following system of equations 

Figure 4 reports performance curves of the binary orthogo- 
nal signaling scheme subject to Middleton Class A, general- 
ized Gaussian, generalized Laplace and generalized Cauchy 
noise, respectively. All curves are labelled by the shape pa- 
ranieter VG although the actual parameters were selected 
according to (19). Obviously, for VG --+ 2 all of the curves 
approach tlie error probability curve under Gaussian noise 
(Gaussian limit,). For lower values of VG the performalice 
curves are still close to each other, except the one for Gt.11- 
eralized Cauchy noise which significant,ly depart,s from t lie 
others the SNR increases. A possible justificat,ion of the 
singu1arit.y of t,he Cauchy pdf is that it3 decays according 
to  an algebraic l aw,  while all of the others decay expnnen- 
tially. Froin t,he results of Figure 4 it. may be inferred t h a t  
t lit. sliapc paratneter is the crucial fact,or iii explaining t lit. 

variatioii of pcrfortnance and tlial addiliona.l fact.ors t i t d  

to  t.lie part.ic.ular noise distributioii only accoiiiit. for minor 
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residual variation, except possibly for factors tied to the 
type of asymptotic decay (algebraic or exponential). 

V CONCLUSIONS 
We have addressed a problem of receiver design for sig- 

nals with possibly unknown parameters in non-Gaussian 
noise. The noise model based on the theory of SIRP’s 
provides the mathematical tractability required to carry 
out the design, while embracing those marginal probabil- 
ity density functions most commonly assumed for impul- 
sive disturbances. It also allows one to deal with correlated 
noise by a whitening approach. It is not fully compatible 
with Middleton impulsive noise model though, since the 
two models lead to different higher-order characterizations. 

We adopted the ML deckion rule, or its generalization, 
the GML rule, as needed in dealing with unknown signal 
parameters. In any cage the test statistic turned out to be 
independent of the noise marginal pdf in the SIRP class, 
and coincident with the test statistic for Gaussian noise. 
In this sense, the resulting receiver for either completely 
known signals or for signals with unknown amplitude and 
phase parameters is canonical. In the special case of signals 
with equal-energy the resulting receiver is the conventional 
coherent or incoherent detector. Notice that the previous 
statements do not generally apply if the Maximum A Pos- 
teriori (MAP) decision rule is adopted. 

We derived general formulas for the error probability, 
which also provide guidelines for the selection of the signal 
set. Generally speaking, optimum equi-energy signal sets 
under the assumption of Gaussian noise are also optimum 
under the assumption of any SIRP noise. In particular, the 
set of orthogonal equal energy signals is optimum for given 
size M ,  as it can be explained in the light of the composite 
hypotheses testing theory. 

An investigation of a number of special cases showed 
that the noise distribution affects the performance mainly 
through the shape parameter, the scale parameter being 
accounted for by the SNR and other factors being relatively 
uninfluential. As a general rule, lower values of the shape 
parameter result in poorer performance. 
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