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Abstract: The detection of signals with unknown 
parameters in correlated K-distributed noise, 
using the generalised Neyman-Pearson strategy is 
considered. The a priori uncertainty on the signal 
is removed by performing a maximum likelihood 
estimate of the unknown parameters. The 
resulting receivers can be regarded as a gener- 
alisation of the conventional detector, but for a 
zero-memory nonlinearity depending on the 
amplitude probability density function of the noise 
as well as on the number of integrated pulses. It is 
shown that the performance for uncorrelated 
observations is unaffected by the specific signal 
pattern, but depends only on the signal-to-noise 
ratio; moreover, the effect of the clutter corre- 
lation on the performance can be accounted for 
simply by a detection gain. A performance assess- 
ment, carried out by computer simulation, shows 
that the proposed receivers significantly out- 
perform conventional ones as the noise amplitude 
probability density function markedly deviates 
from the Rayleigh law. It also shows that the gen- 
eralised Neyman-Pearson strategy is a suitable 
means of circumventing the uncertainty on 
wanted target echos since the operating character- 
istics of the receivers for the case of signals with 
unknown parameters closely follow those of the 
receiver for a completely known signal. 

1 Introduction 

The theory of radar detection in clutter is well established 
for the case in which the baseband equivalent of the clut- 
ter is a complex Gaussian process, which implies that the 
amplitude is a Rayleigh variate [l,  Chaps. 10, 111. In 
such cases the Neyman-Pearson test of optimum detec- 
tion, in the sense of maximum detection rate for con- 
strained false-alarm rate, can be simply implemented in 
all instances of practical interest: coherent or incoherent 
detection, totally or partially known target signal, partial 
characterisation of the disturbance [I,  Chaps. 10, 111. 
The latter case, namely that of unknown clutter power, 
requires additional constant false-alarm rate (CFAR) pro- 
cedures. 
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There are situations, however, where this Gaussian 
model is not applicable, since the assumption that the 
received clutter results from a large number of indepen- 
dent and identically distributed elementary scatterers 
does not hold. In fact, if only a limited number of such 
scatterers actually contribute to the received clutter echo, 
as is the case for high resolution and/or low grazing 
angles, then the measured amplitude probability density 
function (APDF) exhibits large deviations from the Ray- 
leigh distribution [2, Chap. 13 and references] and is 
better fitted by families of APDFs, such as the Weibull 
[3, 41 and the K-distribution [S-81. Receivers designed 
under the Gaussian assumption, i.e. conventional recei- 
vers, are no longer optimum for such non-Gaussian inter- 
ference, and their performance may degrade with respect 
to that predicted according to the Gaussian model. 

The problem of radar detection in non-Gaussian 
clutter - and, in particular, in K-distributed clutter - 
has already received some attention, at least at the 
analysis stage. The problem of predicting the per- 
formance of both fixed-threshold and ideal CFAR detec- 
tors in compound K-distributed noise and the effect of a 
binary post-detection integration are commanded in Ref- 
erence 6. This analysis is extended in Reference 9 to 
account for the presence of thermal noise also, and in 
Reference 10 the classical cell-averaging CFAR procedure 
in compound K-distributed plus thermal noise is 
analysed. The effect of the spatial correlation on the per- 
formance is studied in Reference 7, and the performance 
of the classical noncoherent detector in K-distributed 
clutter is thoroughly analysed in Reference 11. Finally, a 
general approach to theoretical performance prediction 
for both fixed and adaptive threshold detectors is provid- 
ed in Reference 12. 

In contrast, little advance has been made with the task 
of designing detectors, in the previously cited Neyman- 
Pearson sense, for given non-Gaussian statistics of the 
disturbance. Since it lacks the higher order statistical 
characterisation of clutter as a complex non-Gaussian 
process, this task is particularly hard when coherent 
detection is to be considered and/or the correlation of 
clutter is to be accounted for. As we show here, this diffi- 
culty can be overcome by resorting to the theory of 
spherically invariant random processes (SIRPs), which 
provides joint PDFs of arbitrarily high order, allowing 
for independent specification of the APDF and the 
covariance functions of the clutter [13, 141. In this 
context, the spatial correlation of the clutter is not explic- 
itly accounted for, since, as long as one deals with the 
detection of a target in noise with known statistics, it does 
not play any role. If, conversely, the clutter is known only 
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to belong to the K-distribution family, but no informa- 
tion is available on its statistics, the spatial correlation 
will be of primary concern, since the shape of the APDF 
turns out to depend upon such correlation [7]. 

Based on such theory, the design of an optimum detec- 
tor of a known signal in K-distributed clutter was con- 
sidered in Reference 15, and a performance assessment 
was carried out in comparison with the conventional 
receiver, to show that significant improvements may be 
achieved by this ad hoc design, especially in the case of a 
marked discrepancy of the actual clutter APDF from the 
Rayleigh law. In this paper, we extend that work, by 
introducing and assessing detectors which implement the 
so-called generalised log-likelihood ratio test (GLLRT) 
for signals with unknown parameters, to encompass 
other common instances of target characterisation. More 
specifically, we consider wanted target echos with known 
amplitude and unknown phase, and wanted target echos 
with unknown amplitude and unknown phase. 

2 

The K-APDF, as proposed on physical grounds by 
Jakeman and Pusey [SI, is 

The K-APDF and the SIRP clutter model 

where rc) is the Eulerian function, K,c) is the modified 
second-kind Bessel function of order v, o2 is the common 
power of the quadrature components and v is a shape 
parameter, ranging from 0 to +a. The Rayleigh dis- 
tribution belongs to the family of eqns. 1 as the limiting 
case v + + CO; a value of v in the low range indicates 
discrepancies from the Rayleigh APDF, mainly in the 
high-amplitude tail of the distribution. 

The assumption underlying the K-distribution model 
is that the received echo results from a number M of ele- 
mentary scatterers, which are still K-distributed with one 
and the same shape parameter: large deviations from the 
Rayleigh law can be due either to a small number or to a 
marked spikyness of contributing scatterers or, obviously, 
to a combination of the two. These properties, and the 
reported fit to experimental data [&8], make the 
K-APDF an excellent candidate as the APDF of the 
clutter. One additional advantage of the K-APDF is that 
it is admissible as the APDF of a SIRP t131. The follow- 
ing short review of relevant properties and interpreta- 
tions of a SIRP explains this advantage. 

Let x(k)  = x,(k) + jx,(k), k = ..., - 1, 0, 1, ..., be a 
general discrete-time complex process representing the 
baseband equivalent of a radio-frequency signal. Its Nth- 
order statistical characterisation amounts to assigning 
the PDF of the complex N-dimensional (row) vector x = 
x, + jx,, namely the joint PDF of the 2N entries of the 
real vector (x, , xq). The sequence x ( k )  is a complex SIRP 
if, for any N, its Nth order PDF can be cast in the form 

where p is the mean E [ x , ]  + jE[x,] = p, + jp,, M is 
the 2N-dimensional covariance matrix E [ ( x ,  , x,)'(x, , 
x,)], h2, (.) is a suitable function depending on N and 

llx - Pllm 

= Jtcx, - Pc 7 xq - &P- '(x, - c, > 1, - pJ'1 (3) 
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is the norm of x - p defined by the definite positive 
matrix h4-l. 

Notice that, for white observations 

fJx) = (2n)-Nh2Ax - ~ 1 1 ~ )  (4) 
i.e. the norm IIx - reduces to the usual Euclidean 
norm. 

Such a process can be deemed as the product of a 
complex Gaussian process g(k )  times a real non-negative 
modulating variate s, independent of g(k) ,  namely 

= ss(W (5) 
and hence can be modelled as shown in Fig. 1 (Yao's 
representation theorem [16]). Here, w(k) is a white 
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Fig. 1 S I R P  modelfor a complex non-Goussian correlated sequence 

Gaussian process, and the linear filter shapes the corre- 
lation functions of g(k )  as specified by M ,  whereas the 
multiplier independently induces the non-Rayleigh 
APDF through the PDF of s, say f (s ) .  Thus a complete 
specification of the process amounts to assigning the first 
and second order moments - as for Gaussian processes 
~ plus the auxiliary densityf(s) [13, 141. Note that, if we 
feed the process, eqn. 5, to a linear system, the output 
process is still conditionally Gaussian, as a consequence 
of the closure property of Gaussian processes, and the 
PDF of the modulating variate s remains unchanged. 
Thus the SIRPs are closed with respect to linear trans- 
formations. 

The model of eqn. 5 has a physical interpretation in 
the light of the composite scattering theory, according to 
which the predetection clutter can be viewed as a Gauss- 
ian random process, resulting from diffusion by a large 
number of elementary scatterers, modulated by a highly 
correlated process which accounts for the gross reflec- 
tivity characteristics of the illuminated patch. If this com- 
pound process is observed by windows much shorter 
than the average decorrelation time of the modulating 
process, so that the latter is constant inside any window, 
then the model of eqn. 5 applies with the modulating 
process degenerating into the modulating variate s, 
changing from window to window. With this approx- 
imation the correlation properties of the compound 
process coincide with those of the underlying Gaussian 
process apart from a possible scale factor, namely the 
mean square value of s, which we will assume hereafter, 
without loss of generality, to be unity. Besides its physical 
meaning, the model of Fig. 1 lends itself readily to com- 
puter simulation procedures, allowing for independent 
control of the APDF, through the PDF f ( s ) ,  and of the 
correlation properties, which can be accommodated by 
suitable design of the linear filter. 

The special case of a correlated complex SIRP with 
K-APDF is a zero-mean process, characterised by the 
Nth order PDF [13]: 
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and by a generalised-chif(s), namely 

2v' 
f(s) = - s2'-l exp ( - v s 2 )  s 2 o W) (7) 

This specific SIRP model for the received clutter echo has 
been validated in References 6 8 .  

Summing up, the characterisation of clutter as a 
complex SIRP is convenient in view of the synthesis of 
optimum receivers since 

(a) The clutter model is compatible with the assump- 
tion of K-APDF eqn. 1 

(b)  arbitrary correlation properties can be forced upon 
the clutter quadrature components 

(c) multivariate PDFs of the clutter of any order can 
be derived. 

3 Detection in K-distributed clutter 

The problem of detecting a known signal embedded in an 
additive disturbance (clutter) can be stated in terms of the 
following hypotheses test 

H , : z = c  
H , :  z = U f c 

where z = E ,  + jz , ,  U = U, + ju,  and c = c, + jc, are 
complex vectors whose components are samples from the 
baseband equivalent of the received signal, the target 
signal and the clutter, respectively. Since, in general, the 
clutter signal is a non-white zero-mean process, c has a 
nondiagonal covariance matrix M .  The theorem of 
reversibility [19, p. 2891 ensures, however, that there is 
no penalty in performance if the vector c is whitened by 
transforming the received vector z through 

(rc , r,) = (z ,  , z,)ED- ' I 2  (9) 
where E is the matrix of the eigenvectors of M, and D is 
the diagonal matrix of its eigenvalues C17, pp. 32-36]. 
Thus, the problem of detecting the complex signal U = U ,  

+ ju ,  in correlated noise is equivalent to that of detecting 
its filtered version U = U, + ju, in uncorrelated noise, say 
n, with 

(U, , uq) = (ue , u,)ED 

and leads to the hypotheses test 

H , : r = n  
H I :  r = U f n 

The structure of the optimum detector for problem 1 1  
depends upon the degree of the a priori knowledge about 
the signal. In what follows we account for possible uncer- 
tainties in the phase 0 and the amplitude A of the signal. 
For example, the wanted target echo may be a coherent 
pulse train with unknown initial phase and unknown 
attenuation A uniformly affecting all pulses of the train. 
Thus, it will be convenient to elicit the possible unknown 
parameters by writing U = Ae@p. 

Optimum detection, in the Neyman-Pearson sense, of 
a completely known signal in the presence of noise with 
PDF f,(.) is accomplished by the log-likelihood ratio test 
(LLRT): 

This is obviously the most favourable among all 
instances of a priori knowledge about the signal: the 
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operating characteristics of the test 12 are unbeatable by 
any other test to detect partially known signals, given the 
noise model fnc). This bound will be referred to as the 
'perfect measurement bound'. 

If the wanted target echo is partially known, then the 
detection problem is to discriminate a composite hypothe- 
sis H, against a simple alternative H,. A distribution-free 
solution to the problem is the GLLRT [18, Chap. 91: 

where R is the space of the unknown parameters; more 
precisely it is the space of the phase 0 in the case of 
unknown phase and the space of the pair ( A ,  0) in the 
case of unknown amplitude and phase. This test is equiv- 
alent to the folowing one: 

i.e. it can be obtained from the LLRT by replacing the 
unknown parameters by their maxmum likelihood (ML) 
estimates, denoted by the symbol 0. 

The operating characteristics of the test 14 are tied to 
the accuracy of the ML estimators. Little can be antici- 
pated in general about this accuracy, except for the fol- 
lowing asymptotical properties [19, p. 711: 

(a) ML estimates are consistent, i.e. they converge in 
probability to the true value as the sample size increases 
to infinity 

(b)  ML estimates are asymptotically efficient, i.e. they 
aproach the Cramer-Rao bound as the sample size or the 
signal-to-noise ratio increases to infinity. 

A more canonical approach could be followed if the 
signal parameters were modelled as random variates, dis- 
tributed according to a known PDF. In this case the 
optimum test, in the Neyman-Pearson sense, can be 
obtained by averaging the conditional likelihood ratio 
L(r 1 a) with respect to the distribution of the signal 
parameters. Hence, letting p(a) be the multivariate PDF 
of the parameters with values in R, the Neyman-Pearson 
test is 

HI 

HO 
L(rla)da)da 3 7- (15) 

Although the two approaches are different, they yield 
similar tests when p(a) is smooth, since, in such a case, the 
most significant contribution to the integral in expr. 15 
still comes from the region of R where L(rla) is 
maximum. We stress that the former approach is prefer- 
able in our setup since it is independent of the distribu- 
tion of the parameters. 

3.1 Detection of a known signal in K-distributed 
noise 

From now on we assume that the noise vector has the 
K-APDF of eqn. 1 and obeys the SIRP model, whence its 
multivariate PDF is given by eqn. 6 .  Owing to the above 
properties of SIRPs with respect to linear transform- 
ations, the whitening transformation of eqn. 9 does not 
affect the K-APDF and the SIRP model apart from the 
diagonalisation of the covariance matrix M .  Therefore, 
the covariance matrix M reduces to the identity matrix of 
order 2N and the Nth order PDF of the noise becomes 
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Substituting this into expr. 12, the Neyman-Pearson test 
can be given the form [lS] 

H ,  

where 

g,(4 = 1% Cx'-NK"-dJ(2v)X)I (18) 
The block diagram of the optimum processor implement- 
ing this test is shown in Fig. 2. The distances qo = Ilrll 

It II g,( 

transf 

Fig. 2 Optimum coherent detector in K-distributed clutter 

and q1 = IIr - u I I  are computed and warped through the 
zero-memory nonlinearity (ZMNL) (eqn. 18); then the 
difference between the warped distances is compared to 
the detection threshold T. We stress that the ZMNL, and 
hence the receiver structure, depends upon the number N 
of integrated pulses. 

A relevant feature of this detection scheme is that the 
PDF of the test statistic depends upon the signal-to-noise 
ratio (SNR) 

but otherwise it is independent of the signal pattern p .  
Since any noise in the SIRP class is conditionally 

Gaussian given the modulating variate s (see eqn. 5), it 
is enough to prove the statement with reference to 
Gaussian white noise. 

Let us decompose r into its component along p and 
into the othogonal component, namely 

r = rl + y p  "P = rl + r,, - P 
IIPII IIPII 

Here (.) denotes the dot product between the complex 
row vectors r and p .  As rl contains noise only, it does not 
depend upon the signal under both hypotheses. Then, we 
can write 

4: = /lrll12 + Ir, - A I l ~ l / e j ~ / ~  
4 = llrll12 + I rp12 (21) 

Conditioned upon llrlIl2 = y ,  we have, under the hypoth- 
esis H ,  

and, under the hypothesis H I  

where obviously np denotes the projection of the noise 
along the signal. The modulus I n, I does not depend upon 
the signal. Moreover, we have 1 n, AIlpll eje I = I n p e - j a  

k .4llPll I = I n, i- .4Ilpll I, since, owing to the circular 
invariance of the nose, the phase shift 0 can be absorbed 
in the uniformly distributed phase of n,. Thus, both 
under H ,  and under HI the joint distribution of qo and 
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q l ,  and hence the test statistic expr. 17, does not depend 
on the signal pattern but only on the energy of the 
received signal, namely on the SNR (eqn. 19). 

Two more remarks are in order. First, the distribution 
of the test statistic is independent of the phase 0 under 
both hypotheses. Secondly, the distribution of the test 
statistic depends upon the norm of the wanted target 
echo, not only under the H ,  but also under the H ,  
hypothesis. Therefore, unlike the conventional detector, 
the threshold setting to achieve a given false alarm rate 
must account for both the useful target strength and the 
average noise power. 

In keeping with the fact that the K-APDF (eqn. 1) 
reduces to a Rayleigh distribution as v + + 00, the recei- 
ver implementing the test of expr. 17 reduces to the con- 
ventional receiver as v +  +CO. In fact, the limiting 
expression for the nonlinearity in expr. 17, after suitable 
normalisation and neglecting additive constants, is 

which leads to the so-called minimum-distance decision 
rule. 

3.2 Detection of unknown phase signals in 
K-distributed noise 

The detection of known-amplitude, unknown-phase 
wanted-target echo is handled via the GLLRT (expr. 13), 
with R the space of the unknown phase 0. The complex 
N-dimensional vector is conditionally Gaussian, given 
the modulating variate s, which implies that (re, rn) is a 
real 2N-dimensional conditionally Gaussian vector, dis- 
tributed as X(0, s2 I) under H , ,  and as X ( ( u ,  , uJ, s21) 
under H , .  Thus, the GLLRT is written as 

(25)  
withf(s) as given in eqn. 7. As the exponent in the numer- 
ator of expr. 25 can be written as 

IIr - A~~'PII' = lIrIl2 + A ' I I P I I ~  

- 2.4 Ir - P I  cos (4 - 0) (26) 
with 4 the phase of the dot product r * p ,  the ML esti- 
mate 6 is clearly given by 6. Substituting into expr. 25 
leads to the test 

HI 

H o  
g,(J(Ilrl12 + .4211~112 - 2AIr.pl)) - gv(Ilrll) 3 T (27) 

with g, given in expr. 17. 
The GLLRT detector implementing this test is 

depicted in Fig. 3. Note that the receiver structure is the 

$3 Ironsf comparafor Ho -I-= 
1 

Fig. 3 
distributed noise 

GLLRT detector for target with unknown parameters in K- 
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same as in Fig. 2, but with U replaced by its estimate 
i = A exp (j0)p. Thus the receiver can still be regarded as 
a generalisation of the minimum-distance detector, but 
now q1 represents the distance between the received 
signal and the estimate of the wanted target echo. 

In this case too, the test statistic, under both hypothe- 
ses, depends upon SNR only. In fact, based on the 
decomposition of eqn. 20, we have the same expression of 
42 as in eqns. 21, and we have 

4: = IlrLl12 + I T ,  - A l l ~ l I ~ a I ~  

= llrLl12 + (Ir,I - AllPll)2 (28) 
where we have used the fact that Lr, = d. Thus, the 
same arguments and remarks as in Section 3.1 apply 
here. 

In the case v -+ + to, as y,(.) assumes its limiting form 
(eqn. 24), the test of expr. 27 reduces to 

H I  

HO 
I r .p l  2 7- (29) 

namely to the conventional decision test based on the 
envelope at the output of a matched filter. Had we mod- 
elled the initial phase as a random variate, uniformly dis- 
tributed in ( -n ,  n), rather than an unknown parameter, 
we would have ended up with the same decision test as 
expr. 29. Thus, the solution to the detection problem for 
Gaussian noise is the same, whether the phase is con- 
sidered to be uniform random variate or an unknown 
parameter. 

Instead, for non-Gaussian noise, and in particular for 
K-distributed noise, the two approaches yield different 
tests, even if the phase is uniform. However, from the dis- 
cussion following expr. 15, if 0 is uniformly distributed in 
( -n ,  E) ,  the test of expr. 27 is approximately equivalent 
to the test resulting from the average expr. 15. 

3.3 Detection of unknown amplitude, unknown 
phase signals in K-distributed noise 

When both A and 0 are unknown parameters the 
GLLRT of expr. 13 can be written as 

where 

a = A&’ (31) 

llr - 412 = IIrill2 + lrr, - IIPII I 2  

Resorting to the decomposition of eqn. 20, the norm in 
the numerator is written as 

(32) 
and attains its minimum value for 

(33) 

which represents the ML estimate of a. Substituting eqn. 
33 into expr. 30 and taking the logarithm leads to the test 

(34) 

Hence, the GLLRT detector performs an estimate of the 
actual target signal, namely 

i = 2p (35) 
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and therefore it is the same as that outlined in Fig. 3. In 
particular, notice that the nonlinearity is one and the 
same for all cases. 

In this case too, by similar arguments as for the pre- 
vious cases, the PDF of the test statistic is seen to depend 
upon the SNR only. In fact, the square distance 4: 
between the received and the estimated signal can be 
written as 

while the norm qi (eqn. 21) can be written as 

(37) 
The claimed property then follows from the fact that rl 
does not contain the wanted target echo, while the PDF 
of I rp  1’ is independent of the signal pattern under both 
hypotheses. 

Unlike the previous two cases, the threshold setting for 
the test of expr. 34 to achieve a given false alarm rate is 
independent of the SNR since, under H , ,  both 4, and qo 
depend on noise only. 

Owing to the asymptotical properties of ‘unbiasedness’ 
and efficiency of ML estimates, the performance of the 
GLLRT detector approaches the perfect measurement 
bound as the size N of the integrated sample increases to 
infinity. For finite N ,  it can be shown that 

(a) E[? I H,]  = 0, E [ &  I H , ]  = a, i.e. B is unbiased under 
both hypotheses for any N 

(b) Var [ d  I H,] = Var [ e !  HI] = 2/1lpll z, i.e. d is con- 
sistent, since llpl12 is proportional to N 

(c) if the predetection noise is Gaussian, d is an eficient 
estimate, and in fact attains the Canner-Rao bound [19, 
p. 661. 

Note that, as v +  +to, as the noise converges to the 
Gaussian distribution, detector of expr. 34 uses gm(.) 
(eqn. 24) and hence reduces to the conventional envelope 
detector: 

Had we modelled A and 0 as random variates, the former 
with given PDF p(A) and the latter uniformly distributed 
in ( - E ,  n). we would have obtained the same result as in 
expr. 38 apart from a scale factor which can be included 
in the threshold. This behaviour of the GLLRT was also 
observed when dealing with a target with unknown phase 
in Gaussian noise, so that the a priori uncertainty in the 
signal amplitude bas no influence on the structure of the 
detector. One possible justification is that the envelope 
detector performs the LLRT whenever the signal phase is 
uniformly distributed in ( -n ,  n), independently of the 
amplitude distribution [19]. On the other hand, per- 
forming the LLRT in the case of uniformly distributed 
phase is perfectly equivalent to performing the GLLRT 
in the case of unknown (nonrandom) initial phase. There- 
fore, since the signal amplitude - be it a random or 
deterministic constant ~ does not influence the structure 
of the LLRT receiver, a similar behaviour is expected for 
the GLLRT detector. 

4 Performance assessment 

This Section is devoted to the assessment of the per- 
formances of the detectors introduced above. In particu- 
lar, we investigate to what extent they depend upon the 
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clutter shape parameter and on the number of integrated 
pulses. We also evaluate the loss due to the a priori 
uncertainty in the wanted target echo by direct compari- 
son with the perfect measurement bound. Finally, we 
compare the proposed receivers with the corresponding 
conventional envelope detector. 

The analysis of the GLLRT detectors (exprs. 27 and 
34) is carried out with reference to the case of uncor- 
related clutter. In this situation, as shown in the previous 
Section, the PDF of the test statistic depends only upon 
the SNR under both hypotheses. Therefore, owing to the 
closure of SIRPs under linear transformations, the per- 
formance in correlated clutter can be read off the receiver 
operating characteristics (ROCs) in uncorrelated clutter 
by simply interpreting the abscissas as the signal-to-noise 
ratios at the output of the whitening transformation. 

Since a closed-form expression for the PDF of the test 
statistic is not available, the performance is obtained by 
computer simulations. We adopted the Monte-Carlo 
counting procedure for estimating the detection probabil- 
ities. We resorted to an extrapolative procedure based on 
extreme value theory [20] for setting the threshold T cor- 
responding to a fixed false-alarm probability ( P J J  in the 
range lo-'). This procedure requires the gener- 
ation and processing of only about lo5 clutter patterns to 
obtain reasonably accurate estimates of T .  

The ROCs of the GLLRT detector for a signal with 
unknown phase and for a signal with unknown ampli- 
tude and phase are reported in Figs. 4 and 5 for several 
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values of the shape parameter v, and for N = 2 and 
N = 4 integrated pulses, respectively. In these Figures, 
the ROCs for a perfectly known target signal are also 
shown for comparison. 

The shape parameter is seen to affect significantly the 
performances. In fact, for v = a, i.e. for Gaussian clutter, 
ROCs exhibit a marked threshold effect: that is, a sharp 
transition with increasing SNR from almost unde- 
tectability to close-to-one detection rate. As v decreases, 
the threshold effect is progressively smoothed, so that the 
ROCs cross each other. Thus, in spiky clutter (low v), the 
detectability of weak signals is enhanced, at the price of a 
certain loss of detectability of strong signals. 

The influence of the number N of integrated pulses on 
the performance can be studied through the plots of Fig. 
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6. As N increases, since the integration gain is a non- 
decreasing function of N ,  the performances for all of the 
three target models improve noticeably. 

I 

Fig. 5 
N = 4 and v as a parameter 

~ knownsignal 
~~-~ known amplitude, unknown phase signal 

unknown amplitude. unknown phase signal 

Operating Characteristics of GLLRT in K-distributed noise for 

P , ~  = 10-4 
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Fig. 6 
v = 0.5 and N as a parameter 

~~~~ 

Operating characteristics oJCLLRT in K-distributed noise for 

~~ ~ known signal 
known amplitude, unknown phase signal 
unknown amplitude. unknown phase signal 

P,, = 10-4 

The plots of Figs. 4, 5 and 6 all refer to one and same 
P f , .  However, with changing P I , ,  the effects of the shape 
parameter and of the number of integrated pulses on the 
performances remain the same. 

The loss due to the a priori uncertainty on the wanted 
target echo can also be assessed from Figs. 4 to 6 as the 
horizontal displacement between the ROCs for a com- 
pletely known signal and the corresponding ROCs for 
signals with unknown parameters. The detection loss can, 
in fact, be defined as the incremental SNR required to 
obtain, for a certain signal model with unknown param- 
eters, the same detection rate as for a completely known 
signal. This detection loss is affected by signal strength. It 
is in fact significant for weak signals, but otherwise it can 
be considered as negligible. This is more true as N 
increases, as a consequence of the consistency and 
unbiasedness of the ML estimates. In any case, the 
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noticeable detection loss in the region of weak signals is 
due to the flatness of the ROCs for low SNRs, but the 
decrease of P ,  for a given SNR is not very significant. 

Relative to one another, the detection loss for the case 
of unknown phase and that for the case of both unknown 
phase and unknown amplitude also depend upon the 
shape parameter v. In particular, for very low v, the 
uncertainty in the amplitude contributes significantly to 
the loss, whereas for moderate to high values of v losses 
are essentially the same whether the amplitude is known 
or unknown. This might be explained by the fact that, as 
v increases, the GLLRT detectors converge towards the 
same conventional envelope detector. Therefore, since the 
performances are not affected by the actual signal phase, 
but only by the SNR, the detection losses for the two 
target models tend to coincide as v increases to infinity. 

Overall, the detection loss is negligible in most cases of 
interest; this is an indirect confirmation that the strategy 
of estimating the unknown parameters is suitable means 
of circumventing the uncertainty of such parameters. 

For a comparison between the GLLRT detectors and 
the conventional envelope detector we refer to Fig. 7, 

O ggt 

For the sake of simplicity, we refer to the case of wide- 
sense stationary clutter, i.e. we assume that the quadra- 
ture components of the received disturbance have the 
same autocorrelation and zero crosscorrelation. More- 
over, we assume that the wanted target echo, prior to the 
whitening transformation, is a coherent train, i.e. 

(40) 
where F ,  is the target Doppler shift normalised to the 
pulse repetition frequency (PRF). In Figs. 8 and 9 we 

uk = A exp ( j 0 )  exp [ jZnFAk - I)] k = 1, . . . , N 

,,' / 

P 

Fig. 8 
clutter against [he one-lag correlation coefficient with N us a parameter 
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Performance comparison between GLLRT and conventional 
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GLLRT detector for signal with unknown phase 
GLLRT detector for signal with unknown amplitude and phase 
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where several values of v are considered. Obviously, as v 
increases, the performances tend to be close to one 
another since, in fact, the two receivers tend to become 
equivalent (see Section 3). However, as decreases, the 

Fig. 9 Detection gain for  a coherent train in clutter with Gaussian- 
shaped correlation against the one-lag correlation coefficient with N as a 

newlv Drouosed detectors offer a definite advantaee over < .  . 
the conventional receiver. For very low values of v, the 
advantage extends over the whole range of P i s  of inter- 
est; otherwise it is significant only in detecting weak 
signals. Also note that the threshold effect is much 
sharper for the conventional detector than for the 
GLLRT detectors, especially as v decreases. 

As pointed out above, the ROCs of Figs. 4 7  can be 
used for evaluating the performance in correlated clutter, 
provided that the relationship between the SNR at the 
output and at the input of the whitening tansformation is 
known. More precisely, the effective SNR in decibels, say 
SNR,, to enter with in Figs. 4-7 is 

SNR, = SNR, + G (39) 

report the plots of the detection gain G for N = 2, N = 4 
and N = 8 against the one-lag correlation coefficient p 
with F ,  = 0. Fig. 8 refers to exponential autocorrelation, 
while Fig. 9 refers to Gaussian-shaped autocorrelation. In 
both cases, we observe that the whitening transformation 
produces a loss if p is positive and a gain if p is negative. 
The amount of gain or loss increases with the absolute 
value of p as well as with the number of integrated pulses. 

This behaviour is explained by considering the power 
spectra of signal and clutter. The spectrum of the zero- 
Doppler target signal is a train of spectral lines spaced 
apart by the PRF. For p > 0, the clutter power spectrum 
also consists of spectral lines spaced apart by the PRF; 

where SNRi denotes the signal-to-noise ratio prior to the the shape of each line depends upon the autocorrelation 
whitening transformation and G is the SNR gain in deci- of the clutter, whereas its width decreases with p, 
bels introduced by the transformation (detection gain). resulting in a flat spectrum for p = 0. For p < 0 the 
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clutter spectrum has the same shape as before, but with a 
shift of 0.5 PRF. Therefore, for p > 0, the spectra of the 
clutter and of the useful echo overlap, resulting in a 
‘masking effect’ which worsens as p increases. For p < 0, 
on the other hand, the spectral lines of the signal and the 
clutter are separated by 0.5 PRF; thus, as the absolute 
value of p increases, the signal can be better detected. In 
other words, whatever the autocorrelation function of the 
clutter, assuming a zero-Doppler target signal immersed 
in a zero-Doppler correlated clutter with p < 0 is exactly 
equivalent to assuming that the clutter possesses a 
Doppler frequency of 0.5 PRF with a positive one-lag 
correlation coefficient I p I. 

5 Conclusions 

We have shown that optimum detection of signals in K- 
distributed clutter is feasible once the SIRP model for the 
clutter is adopted. The main addition to the conventional 
receiver (that for Rayleigh clutter) is an easily computable 
zero-memory nonlinearity, which is required to warp the 
signal space metric according to the amplutude PDF of 
the clutter. This result is consistent with the known 
results for detection in Rayleigh clutter, since the non- 
linearity has no effect as the K-distribution converges 
with increasing v to the Rayleigh one. 

Other esults presented here also turn out to be 
natural, though not obvious, extensions of known facts 
regarding detection in Rayleigh clutter. For example, the 
operating characteristics in uncorrelated clutter can be 
given in terms of the signal-to-noise ratio only, as the 
actual signal pattern is unimportant. The case of corre- 
lated clutter can be handled by whitening transform- 
ations at the design stage, and hence by a detection gain 
at the analysis stage. 

One remarkable difference with respect to detection in 
Rayleigh clutter is that one of the two approaches to 
handle the possible uncertainty about the distribution of 
the unknown parameters, is no longer feasible. In fact, 
unlike the case of Rayleigh disturbance, there is no test 
with respect to signal amplitude which is the most power- 
ful in all cases, even when the phase is assumed to be 
uniform. Thus the average likelihood ratio test, and 
hence the receiver structure, depends upon the amplitude 
distribution. The other approach to circumvent the 
uncertainty in the signal parameters, namely to introduce 
their estimates in the likelihood ratio test, is instead 
distribution-free by nature and, therefore, is more prefer- 
able in our set-up. The resulting detector is also robust 
against the actual phase signal, in the sense that its per- 
formance is independent of whether the signal phase is 
modelled as a random variate with arbitrary PDF or as 
an unknown nonrandom parameter. 

Regarding the disturbance, the receiver structure, and 
in particular the zero-memory nonlinearity, is dependent 
upon the shape parameter of the K-distribution. In some 
cases, this parameter may be assumed to be known at 
least approximately. For example, the values of the shape 
parameter for sea clutter have been expressed as func- 
tions of the grazing angle, the across-range resolution, 
the polarisation and a suitable aspect factor [21]. In par- 
ticular, the impact of the spatial correlation on the actual 
shape parameter of the received disturbance for varying 
across-range resolution has been analysed in Reference 7 
with respect to sea clutter. Hence, such correlation might 

be accounted for both at a design stage, by keying the 
zero-memory nonlinearity to the actual value of v, and at 
an analysis stage, by entering the ROCs with the predict- 
ed value of the shape parameter. 

Moreover, from the performance analysis of the pre- 
vious section, if can he informed that the actual value of v 
does not critically affect the performance, so that even a 
rough knowledge of the shape parameter may suffice to 
select the zero-memory nonlinearity. Thus, one might 
conceive an adaptive processor, namely one capable of 
switching among a small number of zero-memory non- 
linearities according to either previously known or esti- 
mated values of the shape parameter. 
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